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a b s t r a c t 

Alzheimer’s disease is a neurodegenerative disease in which the degree of cortical atrophy in specific structures 

of the brain serves as a useful imaging biomarker. Recent approaches using linear mixed effects (LME) models in 

longitudinal neuroimaging have been powerful and flexible in investigating the temporal trajectories of cortical 

thickness. However, massive-univariate analysis, a simplified approach that obtains a summary statistic (e.g., a 

𝑝 -value) for every vertex along the cortex, is insufficient to model cortical atrophy because it does not account 

for spatial similarities of the signals in neighboring locations. In this article, we develop a permutation-based 

inference procedure to detect spatial clusters of vertices showing statistically significant differences in the rates of 

cortical atrophy. The proposed method, called SpLoc, uses spatial information to combine the signals adaptively 

across neighboring vertices, yielding high statistical power while controlling family-wise error rate (FWER) accu- 

rately. When we reject the global null hypothesis, we use a cluster selection algorithm to detect the spatial clusters 

of significant vertices. We validate our method using simulation studies and apply it to the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) data to show its superior performance over existing methods. An R package for 

implementing SpLoc is publicly available. 
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. Introduction 

The spatial topography of the rate of cortical atrophy has been shown

o differ between normal aging individuals and those diagnosed to have

ild cognitive impairment (MCI) or Alzheimer’s disease (AD), giving

 quantitative characterization of regional changes in the cortex that

ccompany normal aging ( Chan et al., 2003; McDonald et al., 2009 ).

tructural magnetic resonance imaging (MRI) data collected longitudi-

ally can be used to characterize the temporal trajectories of cortical

hickness along the cortical surface defined on a manifold. This type of

ata gives rise to spatial data with measurements on vertices on a cor-

ical mesh, as well as longitudinal trajectories of cortical thickness at

ach vertex. 

The primary goal of this article is to develop a novel inferential pro-

edure to detect spatial clusters of vertices where rates of cortical atrophy

iffer between those who are cognitively normal (CN) and subjects di-

gnosed with AD. While there have been a number of works in the neu-

oimaging literature that addressed similar research questions, in this

rticle we focus on the methods based on linear mixed effects (LME)
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odeling because LME is powerful in detecting group differences us-

ng longitudinal neuroimaging data. Also, LME modeling is a flexible

pproach that can handle a non-uniform number of visits and missing

ates, and it is useful in modeling longitudinal trajectories of a group, or

roup differences in trajectories, while accounting for the within-subject

ariability via random effects. In the functional MRI (fMRI) literature,

taffaroni et al. (2018) and Hart et al. (2018) used models based on

he LME model to analyze longitudinal trends in functional connectiv-

ty (FC) networks in resting state fMRI. In the MRI literature, Bernal-

usiel et al. (2013b) used an LME model to investigate the differences of

he longitudinal trajectories of cortical thickness between subjects with

D and CNs. In imaging genetics, Xu et al. (2014) used an LME model for

 longitudinal genome-wide association study (GWAS) for neuroimag-

ng phenotypes. Fast and robust LME-based methods via the generalized

stimating equation (GEE) have been developed in the neuroimaging lit-

rature ( Guillaume et al., 2014; Liang and Zeger, 1986 ). 

The vertex-wise LME (V-LME, Bernal-Rusiel et al. (2013a) ) and spa-

iotemporal LME (ST-LME, Bernal-Rusiel et al. (2013b) ) are two pop-

lar methods for analyzing longitudinal cortical thickness data and
ase Neuroimaging Initiative (ADNI) database ( adni.loni.usc.edu ). As such, the 

NI and/or provided data but did not participate in analysis or writing of this 
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ave been recognized in a number of applications ( Gordon et al., 2018;

andin-Romero et al., 2017 ). V-LME fits a univariate LME to each ver-

ex along the cortex. ST-LME is an extension of V-LME that fits a spa-

iotemporal model to a predefined subset of vertices and then adds a

arametric spatial covariance structure to the model, which improves

tatistical power ( Bernal-Rusiel et al., 2013b ). Both V-LME and ST-LME

onduct massive-univariate analyses to obtain vertex-wise 𝑝 -values, and

oth then adjust for multiple comparisons by controlling for the false

iscovery rate (FDR) ( Benjamini et al., 2006; Genovese et al., 2002 ).

oth V-LME and ST-LME are readily available in FreeSurfer ( Fischl,

012 ). 

Massive univariate analyses do not take advantage of spatial depen-

encies of the underlying signal , a term we use for the true value of

 parameter of interest; in our case, the signal we are interested in

s the difference in cortical atrophy between the CN and AD groups

long the cortical surface. Furthermore, the vertex-wise effect size is

ow, justifying the need for smoothing the data during preprocessing

e.g., full-width at half-maximum [FWHM] of at least 8mm) to reduce

he noise level ( Coalson et al., 2018 ). However, excessive smoothing

lurs the data, which in turn blurs the spatial extent of the underly-

ng signal, resulting in a loss of spatial specificity. For example, a null

ertex before any smoothing may become a pseudo-signal vertex after

eing smoothed when the null vertex is close to the signal vertex. Any

tatistical method that uses extensively smoothed data and identifies the

seudo-signal vertex as signal is prone to a loss of specificity. Thus, it

ould be necessary to choose a level of smoothing to the cortical thick-

ess data that balances the decrease in the vertex-wise noise and spatial

pecificity ( Bernal-Rusiel et al., 2010 ). 

As discussed above, one major challenge in modeling longitudinal

ortical thickness data is to improve power and sensitivity in detecting

on-null vertices while simultaneously maintaining a reasonable range

f smoothing that does not lead to a great loss in spatial specificity. On

ne hand, it is important to fully incorporate the spatial dependencies

f the signals in the model as a form of cluster-wise inference in LME.

or example, if there is a vertex showing a statistically significant dif-

erence in atrophy rate between those with AD and those who are CN,

hen it is also likely that neighboring vertices will also reveal statistical

ignificance, in which the magnitude and the signs of the effect size is

imilar. On the other hand, it is beneficial to achieve high power by us-

ng rich spatial information and not depending on excessively smoothed

ata. This motivates a need for a new statistical method for cluster-wise

nference without relying on Gaussian random field theory and its as-

umptions to justify the need for spatial smoothing ( Lerch and Evans,

005 ). 

The main contributions of this article are to address the afore-

entioned challenges in modeling longitudinal neuroimaging data and

rovide a new permutation-based inference procedure with improved

ower and sensitivity relative to existing approaches. To this end, we ex-

and on the burden test framework, which allows us to construct score

est statistics that leverages the information from neighboring vertices

o identify candidate spatial clusters in a data-adaptive way. Next, given

he multiple comparisons problem that arises from the number of spatial

lusters under consideration, we use a permutation procedure to control

or the family-wise error rate (FWER), and the statistically significant

lusters are picked using a cluster selection algorithm. The proposed

ethod is computationally feasible since it requires fitting vertex-wise

MEs only and permutation does not require refitting LMEs. Also, the

roposed method does not rely on excessive spatial smoothing during

reprocessing, and we show this empirically by applying the proposed

ethod in the analysis of longitudinal cortical thickness data with a

inimal level of smoothing (FWHM = 2 mm). 

The rest of the article is organized as follows. In Section 2 , we pro-

ide details to the proposed method. In Section 3 , we evaluate the per-

ormance through simulation studies and apply SpLoc to the longitudi-

al cortical thickness data obtained from the Alzheimer’s Disease Neu-

oimaging Initiative (ADNI). We conclude with a discussion in Section 4 .
2 
. Methods 

.1. Notation and model setup 

Let 𝑖 = 1 , … , 𝑛 be the index for subjects, 𝑗 = 1 , … , 𝑚 𝑖 be the index for

isits for subject 𝑖 , and 𝑘 = 1 , … , 𝑠 be the index for vertices defined by the

riangulation of the cortical mesh. Also, let 𝑡 𝑖𝑗 be the time between the

aseline and the 𝑗th visit of the subject 𝑖 . We let 𝐱 𝑖 be the 𝑞-dimensional

ovariate vector for subject 𝑖 at the baseline and let 𝑧 𝑖 = 1 if subject 𝑖 is

n group 1 (CN) and −1 if subject 𝑖 is in group 2 (AD). 

We first present our model parametrization for each vertex based on

he linear mixed effects (LME) models: 

 𝑖𝑗𝑘 = 𝛼0 𝑘 + 𝐱 𝑇 𝑖 𝜶1 𝑘 + 𝑧 𝑖 𝛽0 𝑘 + 𝑡 𝑖𝑗 𝛽1 𝑘 + ( 𝑧 𝑖 ⋅ 𝑡 𝑖𝑗 ) 𝛾𝑘 + 𝑏 
(0) 
𝑖𝑘 

+ 𝑡 𝑖𝑗 𝑏 
(1) 
𝑖𝑘 

+ 𝛿𝑖𝑗𝑘 , (1) 

here 𝑦 is cortical thickness and the elements of ( 𝑏 (0) 
𝑖𝑘 

, 𝑏 
(1) 
𝑖𝑘 
) 𝑇 ∼

 ( 𝟎 , 𝚽𝑘 ) are a random intercept and a random slope for subject

 at vertex 𝑘 . We let 𝛿𝑖𝑗𝑘 ∼  (0 , 𝜏2 
𝑘 
) be the noise component and assume

hat the random effects and the noise are independent. The main pa-

ameter of interest in this paper is 𝛾𝑘 , a parameter for the interaction

etween time and clinical status, that allows us to compare the corti-

al decay rates between AD and CN. 𝛾𝑘 = 0 implies that two groups’

aseline cortical thickness may vary (when 𝛽0 𝑘 ≠ 0 ) but decay rates are

he same. Therefore, setting 𝐻 0 ( 𝑘 ) ∶ 𝛾𝑘 = 0 is a valid parametric null hy-

othesis for a vertex-wise difference between two groups’ cortical decay

ates. Extending this to the global null hypothesis 𝐻 0 ∶ 𝛾1 = ⋯ = 𝛾𝑠 = 0
nables brain-wise inference, with a two-sided alternative hypothesis

 1 ∶ at least one 𝛾𝑘 ≠ 0 . 
We now redefine the parameters in Eq. (1) for simplicity in nota-

ion. Let 𝐗 𝑖 be the matrix that contains of covariate information of an

ntercept, nuisance covariates ( 𝐱 𝑇 
𝑖 

), and main effects of time and clinical

tatus ( 𝑧 𝑖 and 𝑡 𝑖𝑗 ) with the order of the visit 𝑗. Then, Eq. (1) is re-written

s a simpler marginal form tailored for the null hypothesis: 

 𝑖𝑘 = 𝐗 𝑖 𝜼𝑘 + ( 𝑧 𝑖 ⋅ 𝐭 𝑖 ) ⋅ 𝛾𝑘 + 𝝐𝑖𝑘 , 𝝐𝑖𝑘 ∼  ( 𝟎 , 𝚺𝑖𝑘 ) , (2) 

here 𝐭 𝑖 = ( 𝑡 𝑖 1 , … , 𝑡 𝑖𝑚 𝑖 ) 
𝑇 . 𝜼𝑘 in Eq. (2) is ( 𝛼0 𝑘 , 𝜶1 𝑘 , 𝛽0 𝑘 , 𝛽1 𝑘 ) 𝑇 in Eq. (1) and

ik is ( 𝑏 
(0) 
ik 

+ 𝑡 𝑖 1 𝑏 
(1) 
ik 

+ 𝛿𝑖 1 𝑘 , ⋯ , 𝑏 
(0) 
ik 

+ 𝑡 𝑖𝑚 𝑖 𝑏 
(1) 
ik 

+ 𝛿𝑖𝑚 𝑖 𝑘 ) 
𝑇 

. In both equations, 𝑧 𝑖 
nd 𝛾𝑘 remain unchanged. 

.2. Statistical inference 

.2.1. Test for detecting spatially localized signals (SpLoc) 

SpLoc provides an explicit cluster-wise inference framework that

everages spatial information to improve statistical power while control-

ing for FWER accurately and maintaining a reasonable computational

ost. To achieve this goal, SpLoc first considers multiple spatial clus-

ers (henceforth called candidate clusters ) and computes a test statistic

or each candidate cluster. As we will later see, SpLoc leverages power

rom multiple non-overlapping candidate clusters of signals where the

ffect size within each candidate cluster are similar. 

We use vertex-wise test statistic from Eq. (2) as a building block for

pLoc. It is because Eq. (2) provides an explicit LME framework, where

nding the maximum likelihood (ML) or restricted maximum likelihood

REML) is applicable to estimate parameters for every vertex 𝑘 . In the

ME framework, the Wald test, the likelihood ratio test (LRT), and the

core test (also referred to as the Lagrange multipler test) are applica-

le to test 𝐻 0 ( 𝑘 ) , and they are all equivalent when the sample size is

arge ( Buse, 1982; Cox and Hinkley, 1979 ). Among possible choices for

ertex-wise test statistics, SpLoc uses the score test as a default for two

ajor reasons. First, score-based testing in our setup is computationally

fficient when using permutation because each permutation does not

equire refitting Eq. (2) , improving computational efficiency. Please see

ection 2.2.2 for details. Second, there have been a number of develop-

ents in statistics and neuroimaging recently that used the score test

n adaptive association testing, which is useful in developing the SpLoc.

im et al. (2014) and Ganjgahi et al. (2015) are other examples of rel-

tively recent works that used the score test in neuroimaging studies. 
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To construct the score test for 𝐻 0 ( 𝑘 ) , consider parameter estimates

 ̃𝜼𝑘 , ̃𝚺𝑖𝑘 } from the model fitted under 𝐻 0 ( 𝑘 ) . The score test statistic for

 0 ( 𝑘 ) from Eq. (2) is 

 𝑘 = 

𝑛 ∑
𝑖 =1 

( 𝑧 𝑖 ⋅ 𝐭 𝑖 ) 𝑇 �̃�
−1 
𝑖𝑘 ( 𝐲 𝑖𝑘 − 𝐗 𝑖 ̃𝜼𝑘 ) , (3) 

hich follows a normal distribution with mean 0 under 𝐻 0 ( 𝑘 ) . This score

est statistic quantifies the expected change in model fit (quantified us-

ng the log likelihood constructed from Eq. (1) or (2) ; see Equation (5) of

 Bernal-Rusiel et al., 2013b )) if 𝛾𝑘 were estimated using the data. Test-

ng 𝐻 0 (i.e., no decay rate difference between AD and CN in any vertex)

n the score test framework is followed by constructing the score vec-

or 𝐔 = ( 𝑈 1 , … , 𝑈 𝑠 ) 𝑇 and computing its covariance under 𝐻 0 , denoted

s 𝐕 , where 𝐕 may be obtained in a closed form (with correct model

pecifications) or via permutation (see Section 2.2.2 ). 

Various forms of test statistics using the score vector have been

roposed in the generalized linear model (GLM) framework. Popular

hoices include the burden test (also referred to as the sum test), the

ariance component test, or adaptive methods that take the advantage

f both the burden test and the variance component test ( Kim et al.,

014 ). Among these, we focus on extending the burden test because it

as attractive theoretical properties that motivate our primary purpose

f detecting spatial clusters. The brain-wise burden test statistic adds all

lements of the score vector and has the form of 

 𝑏𝑢𝑟𝑑𝑒𝑛 = 

( 𝟏 𝑇 𝑠 𝐔 ) 2 

𝟏 𝑇 𝑠 𝐕𝟏 𝑠 
= 

( 
∑𝑠 

𝑘 =1 𝑈 𝑘 ) 2 ∑𝑠 
𝑘 =1 

∑𝑠 
𝑘 ′=1 𝐕 [ 𝑘, 𝑘 ′] 

, 

here 𝟏 𝑠 is a vector of 1 with length 𝑠 . When the sample size is large, the

istribution of the test statistic is 𝜒2 
𝑑𝑓=1 when the global null hypothesis

s true. The burden test is motivated to provide high statistical power

hen all 𝛾𝑘 are the same across the cortex ( Lee et al., 2014 ). This sit-

ation, however, is unlikely to happen in our motivating problem, and

n fact we expect that the regions of different cortical decay rates are

ocalized around specific brain regions. 

Our proposed method extends the brain-wise burden test framework

o construct a data-adaptive test. We first note that its extended version

s well-motivated when signal locations are known a priori . Similar to

he brain-wise burden test, we may consider adding score statistics in

he signal locations only. Then, its power will be higher than (i) the

rain-wise burden test that adds score statistic from signal and non-

ignal locations or (ii) the vertex-wise score test that does not consider

ll signal locations. One major limitation of this approach, however,

s that the signal locations are unknown a priori and searching for the

ocations needs to be included at the expense of the loss of statistical

ower. To overcome the challenges, we construct an extended version

f the burden test for possible candidate clusters, where each candidate

luster is defined by a vertex 𝑘 and its neighboring vertices. Specifically,

ur proposed test statistic has a form of 

 SpLoc = max 
⎧ ⎪ ⎨ ⎪ ⎩ 
𝑇 
( 𝑟 ) 
𝑘 

= 

(
𝐰 

( 𝑟 ) 𝑇 
𝑘 

𝐔 

)2 

𝐰 

( 𝑟 ) 𝑇 
𝑘 

𝐕𝐰 

( 𝑟 ) 
𝑘 

||||||||
𝑘 = 1 , ⋯ , 𝑠, 𝑟 ∈ Ω

⎫ ⎪ ⎬ ⎪ ⎭ 
, (4) 

here 𝐰 

( 𝑟 ) 
𝑘 

is a binary vector (0/1) of length 𝑠 and 1 is assigned only to

he vertices that are within the 𝑟 nearest neighbors of the vertex 𝑘 (in-

luding the 𝑘 th vertex itself). Therefore, 𝑇 
( 𝑟 ) 
𝑘 

is the burden test statistic

or a specific cluster constructed by vertex 𝑘 and its 𝑟 − 1 neighbors. Ω
s the set of the sizes of neighbors that is specified by the user and pro-

ides a degree of flexibility. 𝑇 𝑆𝑝𝐿𝑜𝑐 takes the maximum of burden test

tatistics of all candidate clusters with varying sizes determined by Ω.

ote that, when the sample size is large, the distribution of 𝑇 
( 𝑟 ) 
𝑘 

is 𝜒2 
𝑑𝑓=1 

nder the global null hypothesis, regardless of the choice of vertex 𝑘

nd neighbor size 𝑟 . In addition, it provides high power when the 𝛾𝑘 s

re the same within the candidate clusters. Specifically, our approach is

ell-motivated when there are multiple non-overlapping spatial clusters

f signals where the effect sizes ( 𝛾 ) within each spatial cluster are the
𝑘 

3 
ame. Since both the number of the clusters as well as the true locations

f the clusters are unknown, we consider various choices of neighbors

or every vertex to scan for signal clusters. Because we have approxi-

ately 10k vertices in each hemisphere using the fsaverage5 template,

e use Ω = {1 , 5 , 10 , 20 , 30 … , 100 , 150 , 200 , 250 , … , 500 , 600 , … , 1000} ,
hough we point out that other choices for this set are possible. This

hoice of Ω incorporates a wide range of cluster sizes in the data analy-

is. Furthermore, this Ω has more candidates with small sizes to reflect

he possibility of the existence of small signal clusters and to balance be-

ween sensitivity and specificity in the selection step (see Section 2.2.3 ).

o illustrate the effects of different choices of Ω, consider the case when

= {1} . In this setting, there is no neighboring vertex without each ver-

ex itself and 𝑇 𝑆𝑝𝐿𝑜𝑐 reduces to the maximum of the vertex-wise score

est statistics (i.e., the min 𝑃 approach). Similarly, the case when Ω = { 𝑠 }
ields the test statistic for the brain-wise burden test ( 𝑇 𝑏𝑢𝑟𝑑𝑒𝑛 ). 

Our proposed method is data-adaptive because we combine test

tatistics of various candidate clusters through the max 𝑇 approach. Be-

ause the test statistic for every cluster has the same distribution under

he global null hypothesis, test statistics for larger clusters do not neces-

arily contribute to the power of the SpLoc. Similar to other cluster-wise

nference methods in neuroimaging, our method is well-motivated to de-

ect large signal clusters with low effect size or small signal clusters with

igh effect size. 

.2.2. Permutation 

This section addresses how to compute the 𝑝 -value of the SpLoc test

ia permutation. Permutation is especially helpful in our setting in three

ays. First, while each burden test statistic follows 𝜒2 
𝑑𝑓=1 , the proposed

est statistic 𝑇 𝑆𝑝𝐿𝑜𝑐 does not follow an explicit probability distribution

nder 𝐻 0 . This is a typical situation in an adaptive testing procedures,

nd Monte Carlo and/or permutation is useful to control FWER in the

eak sense ( Kim et al., 2014 ). We note that control of FWER in the

eak sense means that the global null hypothesis is assumed to be true,

hereas control of FWER in the strong sense means that we may truly

ave any combination of nulls and non-nulls. Second, each element of

he score vector 𝐔 is computed vertex-wise without an explicit spatial co-

ariance model for the cortical thickness data. However, cortical thick-

ess data are spatially correlated and an estimate of 𝐕 with the model

ssumption in Eq. (1) will lead to overly conservative results. Permu-

ation provides a useful tool to compute 𝐕 when the score vector is

omputed from the vertex-wise model. 

In this section, we provide a permutation-based approach to ob-

ain a better estimate of 𝐕 and eventually to compute 𝑝 -value. Note

hat each 𝐻 0 ( 𝑘 ) tests on a specific parameter in linear model when

here are nuisance variables added to adjust for confounders. There are

 number of ways to conduct permutation testing, as summarized in

inkler et al. (2014) . Our approach is analogous to Draper and Stone-

an (1966) , and, in terms of comparing group differences in LME,

raun and Feng (2001) to compute 𝑝 -value of the SpLoc test. Due to

ow the score test statistic is constructed, the proposed method does

ot require refitting the model for each permutation, reducing compu-

ational cost dramatically. Our permutation algorithm is as follows: 

1. Permute group assignments ( 𝑧 𝑖 ) and apply Eq. (3) to generate per-

muted score vector 𝐔 

( 𝑏 ) , 𝑏 = 1 , … , 𝐵 , where 𝐵 is the number of per-

mutations. 

2. Compute 𝐕 using the sample covariance of 𝐔 

( 𝑏 ) , 𝑏 = 1 , … , 𝐵. 

3. Apply Eq. (4) to compute 𝑇 𝑆𝑝𝐿𝑜𝑐 using 𝐕 and 𝐔 as well as 𝑇 
( 𝑏 ) 
𝑆𝑝𝐿𝑜𝑐 

using 𝐕 and 𝐔 

( 𝑏 ) . 

4. The 𝑝 -value of SpLoc is the proportion that the permuted test statistic

𝑇 
( 𝑏 ) 
𝑆𝑝𝐿𝑜𝑐 

exceeds the original test statistic 𝑇 𝑆𝑝𝐿𝑜𝑐 . 

.2.3. Cluster selection 

Our proposed test statistic is designed to test the global null hypoth-

sis 𝐻 0 , i.e., that none of the vertices of the brain shows statistically

ignificant differences in cortical decay rates between those with AD
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Fig. 1. (i): The true shape and size of a signal cluster. (ii): By using a neighbor set that is larger than the signal, the selected signal cluster will have high sensitivity 

(blue square) but with low specificity (hatches). (iii): By including smaller choices to Ω, the selected signal clusters (the collection of non-overlapping 𝐴, 𝐵, 𝐶 circles) 

will have lower sensitivity but higher specificity, provided that the test statistics for 𝐴, 𝐵, and 𝐶 are above the threshold. 
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Table 1 

Comparison of the proposed method (SpLoc) to other LME-based methods in 

longitudinal neuroimaging data. 

Methods Spatial correlation Spatial dependencies Multiple 

of cortical thickness of signals comparison 

SpLoc ✗ 
√

FWER (in the weak 

sense) 

ST-LME 
√

✗ FDR 

V-LME ✗ ✗ FDR 
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t  
nd those who are CN. Rejecting the global null hypothesis itself does

ot provide any further information on the signal clusters, such as how

any, their locations, their sizes, and their shapes. Fortunately, the way

e constructed the test statistic is related to a selection algorithm for

etecting signal clusters. The selection algorithm is based on using the

xtended burden test statistic to determine the spatial clusters (defined

y a vertex and its 𝑟 − 1 nearest vertices). The set of signal vertices can

e identified following Jeng et al. (2010) : 

1. Set FWER (e.g., 𝛼 = 0 . 05 ). Set a threshold 𝑡 ∗ to be the 100 × (1 − 𝛼)%
quantile of the null distribution 

{ 

𝑇 
( 𝑏 ) 
𝑆𝑝𝐿𝑜𝑐 

|𝑏 = 1 , … , 𝐵 

} 

that controls

FWER. 

2. If 𝑇 𝑆𝑝𝐿𝑜𝑐 is less than or equal to the threshold 𝑡 ∗ , conclude that no

vertex is statistically significant. If not, consider candidate clusters

with test statistic greater than the threshold. 

3. Choose the candidate cluster with the highest test statistic and iden-

tify all vertices within the cluster as signals. Remove other candidate

clusters that overlap with the identified signals. 

4. Repeat step 3 iteratively until there is no other candidate to consider.

We provide an illustration of the selection algorithm in Appendix A .

he key idea is that each of the extended burden test statistic follows
2 
𝑑𝑓=1 asymptotically under 𝐻 0 , and we use the ordering of the test statis-

ics to prune off clusters that consist mostly of noise vertices. As a special

ase, all clusters constructed by Ω = {1} only include every vertex only

nd SpLoc with Ω = {1} is equivalent to detecting vertices whose test

tatistic exceeds the threshold that controls FWER. The first two parts of

he selection algorithm ensure that the signal clusters are chosen among

he set of the candidate clusters whose test statistics exceed the thresh-

ld that controls FWER. The rest of the algorithm narrows down the

hreshold-passing candidate clusters. 

The proposed algorithm has theoretical guarantees of the detected

ignal clusters under several assumptions, including that (i) the score

est statistics are independent and (ii) each true signal cluster is one of

he candidate clusters ( Jeng et al., 2010 ). We point out that the first

ssumption does not hold with cortical thickness data since the data ex-

ibit spatial correlations, but, as we will see later, we evaluate the pro-

osed algorithm’s performance on both simulated and empirical data.

urthermore, even though threshold by Jeng et al. (2010) is determined

y random matrix theory under the independence assumption, we use

 permutation approach to control for false positives, which would be

alid in cortical thickness data with spatial correlations. Second, given

 vertices one would be able to create 2 𝑠 − 1 possible clusters, and thus

sing all possibilities as candidate clusters would be computationally

mpossible. Furthermore, the neighbor specifications in practice only

rovide an approximation to the true underlying signal. We show an

xample in Fig. 1 on how the choice for Ω can impact sensitivity and

pecificity. 
4 
Finally, we emphasize that we do not obtain a 𝑝 -value for each clus-

er under consideration. Since we use the selection algorithm after re-

ecting the global null hypothesis, the results from the cluster selection

lgorithm determines the spatial locations that drove the signal and led

o the rejection of the global null hypothesis. 

.3. Summary 

The proposed method, SpLoc, can be considered as an extension of V-

ME in analyzing longitudinal MRI data. V-LME fits a LME (e.g., Eq. (2) )

o all vertices and controls FDR after obtaining vertex-wise 𝑝 -values. A

ain advantage of V-LME is an explicit modeling of temporal covariance

tructure by adding subject-specific random effects ( Bernal-Rusiel et al.,

013b ). SpLoc uses vertex-wise LME as a building block but in a different

ay. Specifically, we use neighbor information (i.e., Ω) in the hypoth-

sis testing framework to improve statistical power while controlling

WER in a weak sense. Please see Groppe et al. (2011) that compared

ifferent methods for controlling for false positives in massive univari-

te analysis and cluster-wise inference. As a special case, when Ω = {1} ,
pLoc reduces to the vertex-wise inference and the conceptual differ-

nce between SpLoc with {1} and V-LME is the nature of adjusting for

utlple comparisons (FWER for SpLoc and FDR for V-LME). Comparing

pLoc to ST-LME, we note that both use spatial information for infer-

nces but their usages are different. ST-LME uses spatial covariance to

odel the cortical thickness data, hence reducing the standard error of

he massive-univariate test statistic. On the other hand, SpLoc specifies

 nearest neighbor set for every vertex from the triangulated surface

nd benefits from adding nearby score test statistics, where ‘nearby’ is

etermined data-adaptively through the hypothesis testing framework.

he differences of the models considered in this article are summarized

n Table 1 . 

. Data analysis 

.1. Simulation studies 

We conducted simulation studies to evaluate the performance of

he proposed method. We used Eq. (1) to generate data. We used the
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Fig. 2. Illustration of 3 simulation designs. We used fsaverage4 to generate 

a triangulated surface of the brain. In each hemisphere, Design 1 has a large 

cluster (150), Design 2 has three clusters of size 50, and Design 3 has 5 clusters 

with varying sizes ( 10 , 20 , 30 , 40 , 50 ). The total number of signal vertices is the 

same across the designs. 
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c  
saverage4 template to obtain vertices on a triangluated surface of the

rain, resulting in approximately 2.5k vertices in each hemisphere. We

hen computed the pairwise geodesic distance between two vertices

nd extracted the nearest neighbor information for fitting SpLoc. In

ach simulation, we fixed the sample size 𝑛 = 50 and let 𝑞 = 3 with

 𝑖 = ( 𝑥 𝑖 1 , 𝑥 𝑖 2 , 𝑥 𝑖 1 ⋅ 𝑥 𝑖 2 ) 𝑇 , and 𝑥 𝑖 1 and 𝑥 𝑖 2 were generated using  (0 , 1) and

inomial (1 , 0 . 5) , respectively. A group indicator was randomly drawn for

ach subject. The number of visits, 𝑚 𝑖 , was generated using the discrete

niform distribution between 3 and 4 to make sure 𝑚 𝑖 > 1 and we set

 𝑖 = (0 , 0 . 5 , 1 , … , 0 . 5 ⋅ ( 𝑚 𝑖 − 1)) 𝑇 . The mean parameters ( 𝛼0 𝑘 , 𝜶1 𝑘 , 𝛽0 𝑘 , 𝛽1 𝑘 )
ere fixed as (1 , 1 , −1 , 0 . 5 , 0 . 5 , 1) . We used two different setups based on

he specifications of the covariance structure, denoted Simulation 1 and

imulation 2 : 

• Simulation 1 : 𝜏2 
𝑘 
= 0 . 5 and 𝚽𝑘 = 

[ 
3 0 . 5 
0 . 5 0 . 2 

] 
and there is no spatial

correlation. This is a setup where V-LME is statistically more efficient

than ST-LME. 
• Simulation 2 : In addition to 𝜏2 

𝑘 
and 𝚽𝑘 in Simulation 1, we consider

spatial correlation structure following Bernal-Rusiel et al. (2013b) .

This is a setup where ST-LME is statistically more efficient than V-

LME. After obtaining the Euclidean distance matrix, we used the ex-

ponential spatial correlation structure with spatial correlation pa-

rameter 0.1 to generate data. This value was chosen so that each

vertex has approximately seven neighboring vertices with a spatial

correlation greater than 0.5 and 27 vertices with a spatial correlation

greater than 0.3. 

We compared SpLoc to V-LME in Simulation 1 and to ST-LME in

imulation 2, based on the efficiency of the competing model due to

he simulation setup. For V-LME, we fitted a LME for each vertex and

sed the Satterthwaite-based approximation to compute vertex-wise 𝑝 -

alues ( Kenward and Roger, 1997 ). We then applied two-stage FDR

djustments for multiple testing to obtain 𝑞-values (FDR-corrected 𝑝 -

alue) ( Benjamini et al., 2006 ). Note that it is appropriate to use the

wo-stage approach because we used independent (non-spatial) noise in

he simulation settings. We used R packages lme4 ( lmer() function)

or fitting LME models, lmerTest ( anova() function) for the Satter-

waite’s approximation, and mutoss ( two.stage() function) for

djusting FDR with the two-stage process ( Bates et al., 2014; Benjamini

t al., 2006 ). For ST-LME, we used the MATLAB functions embedded in

reesurfer. For SpLoc, because the number of vertices in fasverage4 is

pproximately a quarter of the number of vertices in fsaverage5 used in

ur data analysis, we kept the maximum cluster size to be 250 (a quarter

f 1000) so that Ω = {1 , 5 , 10 , … , 250} . 
We considered three designs for illustrations. In each design, all sig-

al clusters are drawn from the candidate clusters specified by Ω. The vi-

ualizations of the designs are provided in Fig. 2 . Specifically, in Design

, we chose a cluster with size 150 in each hemisphere. In Design 2, we

onstructed three different clusters with size 50 in each hemisphere. In

esign 3, we constructed 5 different clusters with sizes 10,20,30,40,50

n each hemisphere. The total number of signal vertices in the brain is

he same across the designs (300). For each signal location, we consid-

red different levels of the effect size 𝛾 > 0 . 

.2. Simulation results 

For each simulation design and setup, we averaged the performance

cross 1000 simulations. We used two criteria to evaluate performances:

ower for 𝐻 0 and signal detection rate. Power is the number of the

imulated datasets we reject the global null hypothesis (i.e., 𝑇 𝑆𝑝𝐿𝑜𝑐 > 𝑡 ∗ )

ivided by the total number of simulations (1,000). Signal detection rate

or each simulated data is the number of true positives divided by the

umber of signal locations (300 in each simulation design). We then

veraged detection rates across 1000 simulations. For V-LME/ST-LME,

e rejected the global null hypothesis when at least one 𝑞-value is less

han 𝛼 and the identified vertices are the ones with 𝑞-values less than
5 
. We note that FDR is equivalent to FWER when the global null 𝐻 0 is

rue, in which comparing V-LME/ST-LME to SpLoc is fair ( Benjamini and

ochberg, 1995 ). We used 𝛼 = 0 . 05 throughout the simulation studies. 

The results for Simulation 1 are summarized in Fig. 3 . SpLoc (with

ifferent choices of Ω) and V-LME all controlled family-wise error prop-

rly, with empirical FWER of 0.047 for SpLoc and 0.048 for V-LME.

rom the perspective of statistical power, Sploc with Ω = {1} nearly had

ower similar to V-LME, which is not surprising because these methods

re using vertex-wise inference but with different methods for adjusting

or multiple comparisons. Also, these two are the methods that do not

se spatial information, so the power curves were similar in all simula-

ion designs where the equal number of signal vertices was used (300).

s the maximum size of the candidate cluster increases, the power of

pLoc increased dramatically but it did not yield noticeable differences

n power when the maximum size of the candidate cluster is greater

han 50. From the perspective of the signal detection rate, we first see

hat there are noticeable differences between SpLoc with Ω = {1} and V-

ME, and V-LME outperformed SpLoc with Ω = {1} when the effect size

radually increased. This is explained by the difference between FDR

nd FWER in vertex-wise inferences. However, SpLoc with different Ωs

howed superior performance over V-LME. The superior performance is

artially due to the power because a candidate cluster, when it correctly

aptured the true signal cluster, would lead to the increase in power and

t would be chosen at the cluster selection step. It is also noticeable from

he detection rates that the performance of SpLoc is also affected by the

izes of the true clusters. Provided that we used sufficiently large can-

idate clusters in Ω, SpLoc had the highest detection rates in Design 1

here all signal vertices formed a large cluster. The detection rates for

pLoc, especially when 𝛾 is small, were lowest in Design 3 when there

ere a few signal clusters with relatively small sizes. Because SpLoc

ses the max 𝑇 approach, the performance of SpLoc will be driven by

he largest signal cluster when all clusters are spatially distinct enough.

his implies that the smaller signal clusters in Design 3 are relatively

ot important factors for the power of the SpLoc. 

The results for Simulation 2 are summarized in Fig. 4 . When spatial

orrelation was present, SpLoc and ST-LME were conservative in con-
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Fig. 3. Summary of (i) power and (ii) detection rate for Simulation 1 . The solid black and blue lines denote the results for SpLoc with Ω and V-LME, respectively. 

The dotted lines are the results of SpLoc using different choices of Ω with respect to the maximum cluster size ( ◊ = 1 , ■ = 10 , ▴ = 30 , ⧫ = 50 ). The purple dotted line 

in the power curve is the FWER (0.05). 
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rolling false positives since they had an empirical FWER of 0.035 and

.01, respectively. When the null hypothesis was not true, there was no

oticeable difference in statistical power between SpLoc and ST-LME.

owever, we observed that the detection rate of SpLoc is higher than

T-LME. This result suggests that SpLoc performs well even when a mod-

rate degree of spatial correlation is present. 

To quantify the error rate under the partial null hypothesis, we aver-

ged the number of false positive vertices divided by the total number

f truly null vertices (the total number of vertices minus the number of

ignal vertices) across 1000 simulated data, for each setup, design and

> 0 . These error rates were all below a nominal rate 0.05, ranged be-

ween 0.033 and 0.038 in Simulation 1 and between 0.001 and 0.026

n Simulation 2. For illustration, we set 𝛾 = 0 . 5 from Simulation 1 and,

or each vertex, we averaged the proportion that that vertex was se-

ected. As shown in Fig. 5 , most of the false positives, whenever they

xist, are located near the signal vertices. This differs from the result of

-LME/ST-LME based on FDR control, in which false positives varied

cross vertices on the cortical surface that are truly null. 

.3. ADNI Data analysis 

ata description 

Data used in the preparation of this article were obtained from

he Alzheimer’s Disease Neuroimaging Initiative (ADNI) database

 adni.loni.usc.edu ). The ADNI was launched in 2003 as a public-private

artnership, led by Principal Investigator Michael W. Weiner, MD. The

rimary goal of ADNI has been to test whether serial magnetic resonance

maging (MRI), positron emission tomography (PET), other biological

arkers, and clinical and neuropsychological assessment can be com-

ined to measure the progression of mild cognitive impairment (MCI)

nd early Alzheimer’s disease (AD). 
6 
We used structural T1-weighted MRI scans obtained from the ADNI-

. We obtained MRI data of 317 subjects by including 127 CN and

90 subjects diagnosed with AD with at least two MRI scans, where

he median and maximum number of scans was 4 and 6 respectively.

he cortical thickness data were preprocessed using FreeSurfer, a stan-

ard tool for MRI processing and extracting cortical thickness. In our

ork, we employed a minimal spatial smoothing (FWHM = 2mm) so

hat we do not excessively contaminate the spatial structure in the data

ith the spatial smoothing due to preprocessing. We did not consider

nsmoothed data in our analysis because current practices use smooth-

ng to reduce inter-subject anatomical variations, and a previous work

howed that analysis using unsmoothed data has low statistical power

 Kang et al., 2015 ). All MR images were registered to the fsaverage5

emplate, a downsampled version of the fsaverage template, resulting

n 10,242 vertices in each hemisphere. Among those, vertices in the

orpus callosum, defined by the Desikan-Killiany Atlas ( Desikan et al.,

006 ), are discarded as it is non-cortical. We then used the geodesic dis-

ance to compute pairwise distance between two vertices and obtain set

f nearest neighbors ( Kirsanov, 2008 ). 

The baseline covariate information we used in our analysis was ob-

ained from the R package ADNIMERGE . We considered baseline age,

ender, and number of years of education, time (from the baseline),

POE genotype status (one if e4 carrier and 0 else), and the total brain

olume as covariates. SpLoc as well as V-LME and ST-LME are based on

he LME framework, and we used random intercept and random slope

f time as random effects. Both V-LME and ST-LME are available in

reeSurfer, and we used the recommended options to implement both

odels. Specifically, we used an exponential correlation structure with

uclidean distance to define the pairwise spatial correlation between

wo vertices and used 𝑘 = 2 (defined by Bernal-Rusiel et al. (2013b) ) to

efine region parcellations for ST-LME. 

http://adni.loni.usc.edu
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Fig. 4. Summary of (i) power and (ii) detection rate for Simulation 2 . The solid black and blue lines denote the results for SpLoc with Ω and ST-LME, respectively. 

The dotted lines are the results of SpLoc using different choices of Ω with respect to the maximum cluster size ( ◊ = 1 , ■ = 10 , ▴ = 30 , ⧫ = 50 ). The purple dotted line 

in the power curve is the FWER (0.05). 

Fig. 5. Visualizations of the Simulation 1 when 𝛾 = 0 . 5 . For each vertex, we computed the proportion selected by each method across 1000 simulated data. 
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Fig. 6 illustrates the vertices detected by SpLoc (with 10,000 per-

utations), vertex-wise inference controlling FWER (achieved by using

pLoc with Ω = {1} ), ST-LME and V-LME. SpLoc identified 20 and 25

ocalized clusters in the left and right hemispheres, with the maximum

luster size of 500 (left) and 800 (right) and the minimum cluster size of

 (left) and 1 (right). Overall, SpLoc declared statistical significance in
7 
7.2% and 32.4% of the total vertices in the left and right hemispheres,

espectively, in the fsaverage5 template. The areas of significance de-

ected by SpLoc are in general agreement with exising work in neu-

oimaging literature, especially along the inferior and middle temporal

egions and the temporal pole in both hemispheres ( Bernal-Rusiel et al.,

013b; Dickerson et al., 2009; Eskildsen et al., 2013 ). Using the Desikan-

illiany Atlas ( Desikan et al., 2006 ), the areas detected by SpLoc cov-



J.Y. Park and M. Fiecas NeuroImage 239 (2021) 118312 

Fig. 6. Illustration of selected vertices for each model using a low level of 

smoothing (FWHM = 2 mm). Each column denotes lateral view (left), medial 

view (left), lateral view (right), and medial view (right), respectively. 
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Fig. 7. Illustration of selected vertices for each model using a wide range of 

smoothing (FWHM = 10 mm). Each column denotes lateral view (left), medial 

view (left), lateral view (right), and medial view (right), respectively. 
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red more than 80% of the areas of the entorhinal, frontal pole, parahip-

ocampal and temporal pole cortices. In addition, the left hemisphere

overed the inferior temporal, isthmus cingulate, and posterior cingu-

ate cortices and the right hemisphere covered the caudal and rostral

nterior cingulate, insula, and medial orbitofrontal cortices. 

Comparing the methods, SpLoc overcame the conservative nature

f vertex-wise inference with FWER control. It is also noticeable that

T-LME and V-LME do not have meaningful differences in identified

ertices. This is not surprising because the median number of vertices

n each partition was 2, which is insufficient to benefit from adding

 spatial covariance. Both ST-LME and V-LME identified parts of the

rain with significant cortical thinning rate differences, but the areas of

ignificance were substantially smaller than the areas detected by SpLoc.

We conducted sensitivity analysis to see if the areas of significance

etected by SpLoc vary by changing the numbers of maximum clus-

er size. We first increased the maximum cluster size from 1000 to

100 , 1200 , … , 2000 and the vertices detected by the regions remained

he same. Similar to the simulation results, the number of detected ver-

ices gradually increased when we gradually increased the maximum

luster size from 1, and the number is maximized when the maximum

luster sizes were 500, 600, and 700. However, there was no difference

n the left hemisphere and minor differences in the right hemisphere and

6.3% of the vertices detected by the original analysis were replicated.

his result suggests that the result of SpLoc is not significantly affected

y the choice of maximum cluster size, provided that it is big enough to

apture large signal clusters of the brain. 

We also applied SpLoc and competing methods to the same dataset

ut with a different smoothing level (FWHM = 10mm) during prepro-

essing to evaluate the impact of spatial correlation on inference. The

esults using the same methods are shown in Fig. 7 . Putting aside the

ssue of spatial specificity caused by a wide-range of smoothing, ST-LME

nd V-LME detected more vertices than SpLoc, and vertex-wise inference
8 
ontrolling FWER still suffered from detecting signal regions identified

n previous neuroimaging literature. The proportion of vertices detected

y SpLoc increased to 42.2% (left) and 46.6% (right). SpLoc detected

88 (left) and 215 (right) clusters but 161 and 188 of them consisted of

 single vertex only. The result suggests that ST-LME and V-LME with

DR adjustments can be more useful when spatial correlation is present.

his result is not surprising, because SpLoc uses vertex-wise models for

onducting spatial-extent inferences, which might lose statistical effi-

iency. 

Altogether, from the data analysis we saw that SpLoc is a useful al-

ernative to the massive univariate analysis when the signal clusters are

xpected to be big and spatial correlation is relatively low. SpLoc is par-

icularly useful in cortical thickness data where a wide range of smooth-

ng is needed to decrease noise level of each vertex at the expense of the

oss of spatial specificity. Finally, SpLoc successfully recovered most of

he regions previously identified in the neuroimaging literature, even

hough the smoothing level during preprocessing is minimal. 

. Discussion 

We proposed a novel inference procedure for analyzing longitudinal

euroimaging data, called SpLoc, that detects spatial clusters of vertices

here the rate of cortical atrophy differs between two cohorts. Our work

s summarized in three steps: (i) fitting univariate (vertex-wise) LME and

ata-adaptively combining combining test statistics across neighboring

ertices, (ii) proposing a computationally efficient permutation-based

nference to control FWER and estimate the covariance of the univariate

est statistics, and (iii) selecting multiple spatial clusters by pruning off

ultiple candidate clusters based on the ordering of the cluster-wise test

tatistics. The proposed method is based on the LME framework that is

idely used for analyzing longitudinal neuroimaging data, and it is a

imple yet powerful approach that uses the vertex-wise LME results for
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etecting spatial clusters. We show using both simulation studies and

n analysis of the ADNI data that the proposed method outperforms

xisting methods. 

Existing works for analyzing cortical data generally smoothed the

ortical thickness data using a Gaussian kernel with FWHM at least

mm, which improved their statistical power at the expense of spatial

pecificity. In our data analysis, we used a minimal level of smoothing

FWHM = 2 mm) during preprocessing so that our inference was driven

ore by the spatial extent of the signal in the data and not by the

moothing due to preprocessing. Our data analysis showed that SpLoc is

 powerful approach that maintains FWER control for multiple compar-

sons, and this is accomplished by adaptively combining neighbor infor-

ation without relying on strict distributional assumptions. We believe,

owever, that an optimal level of smoothing during preprocessing needs

o be determined since this can result in a tradeoff between sensitivity

nd specificity. Alternatively, one could proceed with analyzing the data

sing data smoothed at different levels, as we had done in this work. 

We describe some limitations of SpLoc. As shown in Fig. 1 and in

ur simulation study, the choice of the neighbor set can affect the sen-

itivity and specificity. While we showed in our simulations that SpLoc

aintained favorable power and FWER control in the weak sense rela-

ive to V-LME, Ω needs to be picked carefully. Because the family-wise

rror is controlled in the weak sense in cluster-wise inference, statis-

ically significant regions detected by SpLoc may suffer from the loss

f specificity. A follow-up study on specificity that compares SpLoc to

ther cluster-wise inference methods would be helpful. 

Our proposed method has room for improvement in several

ays. First, similar to how ST-LME outperforms V-LME, adopting the

egion/brain-wise parametric spatial covariance matrix in to the frame-

ork may improve statistical power ( Bernal-Rusiel et al., 2013b; Bow-

an, 2007; Kang et al., 2012 ). Also, accounting for subject-level hetero-

eneity of spatial covariance structures in robust estimation would be

orth considering in MRI literature ( Vandekar et al., 2019 ). However,

patial modeling in a generalized linear model (GLM) framework can

e computationally intensive especially when the number of vertices is

arge. A form of dimension reduction or approximation methods would

e necessary to maintain reasonable computational cost in adding a spa-

ial structure to the model. Second, the construction of nearest neighbors

n this article is based on geodesic distance only, and it is limited in ap-

roximating the shape of true signal clusters. Third, even though it is

ot expected to change the overall message of this article, it is worth

onsidering other factors that would yield more accurate results in ana-

yzing longitudinal cortical thickness data. As an example, the ADNI data

sed in our analysis was collected from different scanners and sites, and

e believe the harmonization of cortical thickness across scanners and

ites would remove unwanted sources of variation in the LME frame-

ork ( Beer et al., 2020; Fortin et al., 2018 ). Also, there is evidence of

ortical thinning of select regions of the brain to accelerate over time,

nd including a nonlinear time effect to capture this phenomenon may

mprove model fit to the data ( Bilgel et al., 2016; Fjell et al., 2014; Mc-

onald et al., 2009 ). 

A key advantage of SpLoc is that it is not limited to the specific LME

odel specified in this article. Even though we were primarily interested

n finding regions with different cortical decay rates in longitudinal MRI,

t is possible to use SpLoc to test for main effects for clinical status by

etting the null hypothesis for the appropriate parameters in the linear

odel and then using an appropriate permutation strategy. Also, it can

e extended to test hypothesis in different linear model frameworks.

n interesting future work is to extend SpLoc to other neuroimaging

ata types. We are currently working on applying SpLoc to group-level

ctivation in task-based fMRI where a number of cluster-wise inference

ethods have been proposed. 

R code for implementing SpLoc, as well as documented examples

sed in simulation studies, is publicly available as a form of R package

t https://github.com/junjypark/SpLoc . 
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ppendix A. Illustration of the cluster selection algorithm 

Consider a 4 × 4 grid of spatial locations, and suppose that the true,

nknown signal clusters are located as shown in Fig. 8 . Our cluster se-

ection algorithm proceeds as follows: 

tep 1. Compute the test statistic for candidate cluster (i.e., 𝑇 
( 𝑟 ) 
𝑘 

) we de-

fined, using the fitted model under the null hypothesis 𝐻 0 . In

our example, we defined candidate clusters as square blocks of

different sizes as shown in Fig. 9 . 
Fig. 8. True signal locations. 

https://github.com/junjypark/SpLoc
https://doi.org/10.13039/100007333
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Fig. 9. 30 candidate clusters defined by square blocks of different sizes. 

Fig. 10. Histogram of test statistics for every candidate cluster. 

Fig. 11. Histogram of test statistics for every candidate cluster, with a threshold 

that controls FWER. 

Fig. 12. Five candidate clusters whose test statistics are greater than a threshold 

that controls FWER. 
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Fig. 13. Identified Signal locations. 
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The histogram of the test statistics can be obtained as shown in

Fig. 10 . 

tep 2. Using permutation, compute the threshold 𝑡 ∗ that controls FWER

at the rate of 𝛼 (e.g., 0.05). The threshold in this example is

shown in the red line in Fig. 11 . 

tep 3. If 𝑇 𝑆𝑝𝐿𝑜𝑐 is less than 𝑡 ∗ , conclude that there is no signal location.

Otherwise (as shown above), ignore all candidates whose test

statistics 𝑇 
( 𝑟 ) 
𝑘 

are less than 𝑡 ∗ and collect the candidates, as shown

in Fig. 12 (ordered by test statistic, from the largest). 

tep 4. Identify the candidate with the largest value as a signal location.

Then erase all the other candidates that overlap with the clus-

ter. This step will erase the second ( 3 × 3 ) and the fourth ( 2 × 2 )
candidates. 

tep 5. Identify the candidate with the largest value as a signal location,

after excluding the pre-defined signal locations and the erased

candidates. This step will identify the third ( 1 × 1 ) candidate as

a signal. 
10 
tep 6. Repeat Step 5 until there is nothing left. This step will addition-

ally erase the last ( 2 × 2 ) candidate and there’s no other candi-

date left. 

tep 7. Combine all identified signal clusters. The identified signal clus-

ters are shown in Fig. 13 . 
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